MEI Structured Mathematics

Practice Comprehension Question - 1

(Concepts for Advanced Mathematics, C2)

Pythagoran and other Triples

Pythagoras was born on the Greek island of Samos in BC572 and founded a school of philosophy, mathematics and natural science in the Greek seaport of Crotona in Southern Italy. He is, of course, famous for the theorem that bears his name, that in a right angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Fig. 1

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{5}
\end{equation*}
$$

$$
3^{2}+4^{2}=5^{2}(9+16=25)
$$

A set of three integers which can form the sides of a right-angled triangle, such as $\{3,4,5\}$ is called a Pythagoran Triple.

One way of generating Pythagoran Triples is as follows:

	Example	Algebraically
Think of an odd number	7	$2 n+1$
Square it	49	$4 n^{2}+4 n+1$
Split your answer into two numbers, one smaller by one than the other	24,25	$2 n^{2}+2 n, 2 n^{2}+2 n+1$
The number you first thought of and these two form a Pythagoran Triple.	$\{7,24,25\}$	$\left\{2 n+1,2 n^{2}+2 n, 2 n^{2}+2 n+1\right\}$

There are other Pythagoran Triples, such as $\{8,15,17\}$ which cannot be generated by this method.
It can, however, be shown that all Pythagoran Triples are generated by the formula

$$
\left\{2 m n_{s} m^{2}-n^{2}, m^{2}+n^{2}\right\}
$$

Where m and n are integers. For instance, substituting $m=4$ and $n=1$ gives the Triple $\{8,15,17\}$.

There are also triangles with one angle 60° and sides of integer length, like the two shown in Fig. 2 below and a generator for these triangles is

$$
\left\{p^{2}+2 p q, 2 p q+q^{2}, p^{2}+p q+q^{2}\right\}
$$

Fig. 2

Questions:

1 Pythagoras Theorem states:
In a right-angled triangle the sum of the squares of two sides is equal to the square on the hypotenuse.
State the converse of this theorem.
2 In Table 1, the number 7 is used as a starting point in the example. Follow the procedure starting with the number 11 to produce a Pythagoran Triple.

3 Explain why a general odd number has the form $2 n+1$.
4 Prove that $\left\{2 n+1,2 n^{2}+2 n, 2 n^{2}+2 n+1\right\}$ is a pythagoran triangle.
5 In line 12 the generator for Pythagoran Triples is given.
(i) Show that this Triple is a Pythagoran Triangle for all positive integers m, n where you may take $m \geq n$.
(ii) Find the Triple generated by $m=3$ and $n=2$.
(iii) Find the values of m and n which generate the triple $\{140,51,149\}$.
(iv) Copy and continue the table below to generate 5 different triples. (In this context $\{6,8,10\}$ is a multiple of $[3,4,5]$ and so is not different.)

m	n	$2 m n$	$m^{2}-n^{2}$	$m^{2}+n^{2}$
2	1	4	3	5
3	1	6	8	10
3	2			

6 (i) In Fig. 2 there is an example given with sides 5,8 and 7 where an angle is 60°. Find the values of p and q that generate this Triple.
(ii) Prove that with the generator given in line 16 , one angle is indeed 60°.

Answers.

6	(i)	Either p or q must be equal to 1 . This is because $p^{2}+2 p q=p(p+2 q)$ and $2 p q+q^{2}=q(q+2 p)$ and one of them equals 5 which is prime. So take $p=1$ giving $1+2 q=5 \Rightarrow q=2$ $\left\{p^{2}+2 p q, 2 p q+q^{2}, p^{2}+p q+q^{2}\right\}$	M1 A1 2	
	(ii)	By cosine rule: $\begin{aligned} & \cos A=\frac{\left(p^{2}+2 p q\right)^{2}+\left(q^{2}+2 p q\right)^{2}-\left(p^{2}+p q+q^{2}\right)^{2}}{2\left(p^{2}+2 p q\right)\left(q^{2}+2 p q\right)} \\ & =\frac{p^{4}+4 p^{3} q+4 p^{2} q^{2}+q^{4}+4 p q^{3}+4 p^{2} q^{2}-p^{4}-2 p^{2}\left(p q+q^{2}\right)-\left(p q+q^{2}\right)^{2}}{2\left(p^{2}+2 p q\right)\left(q^{2}+2 p q\right)} \\ & =\frac{2 p^{3} q+2 p^{2} q^{2}+q^{4}+4 p q^{3}+4 p^{2} q^{2}-p^{2} q^{2}-2 p q^{3}-q^{4}}{2\left(p^{2}+2 p q\right)\left(q^{2}+2 p q\right)} \\ & =\frac{2 p^{3} q+5 p^{2} q^{2}+2 p q^{3}}{2\left(p^{2}+2 p q\right)\left(q^{2}+2 p q\right)}=\frac{\left(p^{2}+2 p q\right)\left(q^{2}+2 p q\right)}{2\left(p^{2}+2 p q\right)\left(q^{2}+2 p q\right)}=\frac{1}{2} \\ & \Rightarrow A=60^{0} \end{aligned}$	M1	

