MEI Structured Mathematics

Practice Comprehension Question - 1

(Concepts for Advanced Mathematics, C2)

Pythagoran and other Triples

Pythagoras was born on the Greek island of Samos in BC572 and founded a school of philosophy, mathematics and natural science in the Greek seaport of Crotona in Southern Italy. He is, of course, famous for the theorem that bears his name, that in a right angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides.

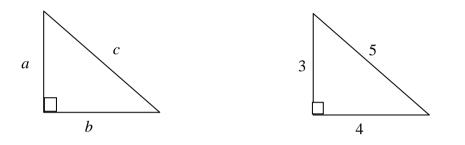


Fig. 1

$$a^{2} + b^{2} = c^{2}$$
 $3^{2} + 4^{2} = 5^{2} (9 + 16 = 25)$

A set of three integers which can form the sides of a right-angled triangle, such as $\{3,4,5\}$ is called a Pythagoran Triple.

One way of generating Pythagoran Triples is as follows:

	Example	Algebraically
Think of an odd number	7	2n + 1
Square it	49	$4n^2 + 4n + 1$
Split your answer into two numbers, one smaller by one than the other	24,25	$2n^2 + 2n$, $2n^2 + 2n + 1$
The number you first thought of and these two form a Pythagoran Triple.	{7, 24, 25}	$\{2n+1, 2n^2+2n, 2n^2+2n+1\}$

There are other Pythagoran Triples, such as {8, 15, 17} which cannot be generated by this method.

It can, however, be shown that all Pythagoran Triples are generated by the formula

$$\{2mn, m^2 - n^2, m^2 + n^2\}$$

Where *m* and *n* are integers. For instance, substituting m = 4 and n = 1 gives the Triple {8, 15, 17}.

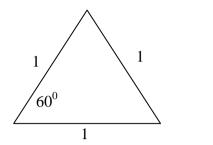
Practice Comprehension Question - 1

5

10

There are also triangles with one angle 60° and sides of integer length, like the two shown in Fig. 2 below and a generator for these triangles is

$$\{p^2 + 2pq, 2pq + q^2, p^2 + pq + q^2\}$$



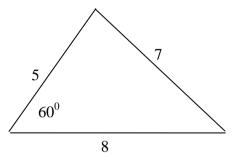


Fig. 2

Questions:

1	Ina	agoras Theorem states: right-angled triangle the sum of the squares of two sides is equal to the square on the otenuse.	
	• -	e the converse of this theorem.	[1]
2		able 1, the number 7 is used as a starting point in the example. Follow the procedure ing with the number 11 to produce a Pythagoran Triple.	[2]
3	Expl	ain why a general odd number has the form $2n + 1$.	[1]
4	Prov	the that $\{2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1\}$ is a pythagoran triangle.	[2]
5	In lii	ne 12 the generator for Pythagoran Triples is given.	
	(i)	Show that this Triple is a Pythagoran Triangle for all positive integers m , n where ye may take $m \ge n$.	ou [2]
	(ii)	Find the Triple generated by $m = 3$ and $n = 2$.	[1]
	(iii)	Find the values of <i>m</i> and <i>n</i> which generate the triple {140, 51, 149}.	[2]
	(iv)	Copy and continue the table below to generate 5 <i>different</i> triples. (In this context {6, 8, 10} is a multiple of [3, 4, 5] and so is not different.)	[2]

т	n	2mn	$m^2 - n^2$	$m^2 + n^2$
2	1	4	3	5
3	1	6	8	10
3	2			

- 6 (i) In Fig. 2 there is an example given with sides 5, 8 and 7 where an angle is 60° . Find the values of p and q that generate this Triple. [2]
 - (ii) Prove that with the generator given in line 16, one angle is indeed 60^0 . [3]

Answers.

1		In a triangle, if the square of the longest side is equal to the sum of squares						B1	
		on the two shorter sides then the triangle is right-angled.							
2		11							
-		121							
		65,66							
		giving {11, 65, 66}							
			2						
3		2 <i>n</i> mu	B 1						
		therefore $2n + 1$ must be odd.							
4			2 (2 $)^2$				1 M1	
4		(2n+1)	$1)^{2} + (2)^{2}$	$(2n^2+2n)^2$				1/11	
		$=4n^{2}$	+4 <i>n</i> +1	$1 + 4n^4 + 8$	$3n^3 + 4n^2$				
				$-8n^2 + 4n$					
		$(2n^2 +$	-2n+1	$)^2 = 4n^4 + $	$4n^2(2n+1)$	$+(2n+1)^2$			
		$=4n^{4}$	$+8n^{3}+$	$-4n^2 + 4n^2$	$^{2} + 4n + 1$				
		$=4n^{4}$	$+8n^{3}+$	$-8n^{2}+4n$	+1				
		So the	sum of	f squares	of two is ea	qual to the squ	are of the third.	A1	
								2	
5	(i)	$(2mn)^{2} + (m^{2} - n^{2})^{2} = 4m^{2}n^{2} + m^{4} - 2m^{2}n^{2} + n^{4}$						M1	
		$= m^4 + 2m^2n^2 + n^4 = (m^2 + n^2)^2$						A1	
		- <i>m</i> -	2						
	(ii)	12, 5,	13					B1	
	(11)	12, 3,	15					1	
	(iii)	We m	ust hav	2mn = 1	$140 \Rightarrow mn =$	- 70		M 1	
			$m^2 - m$	$n^2 = 51$					
		$m^2 + n^2 = 149$							
		Add: $2m^2 = 200 \Rightarrow m^2 = 100$						A1	
		$\Rightarrow m = 10, \Rightarrow n = 7$							
		i.e. {7, 51, 149}							
	(iv)							2	
	、 · /	m n $2mn$ $m^2 - n^2$ $m^2 + n^2$							some sort
		2	1	4	3	5	No. 1	M1	of
		3	1	6	8	10	mult		methodical
		3	2	12	5	13	No. 2		method
		4	1	8	15	17	No. 3		
		4	2				Mult		
		4 3 24 7 25 No. 4							
		5	1	10	24	26	Mult.	A1	All 5
		5 2 20 21 29 No. 5							
								2	

6	(i)	Either p or q must be equal to 1. This is because $p^2 + 2pq = p(p + 2q)$ and $2pq + q^2 = q(q + 2p)$ and one of them equals 5 which is prime. So take $p = 1$ giving $1 + 2q = 5 \Rightarrow q = 2$ $\{p^2 + 2pq, 2pq + q^2, p^2 + pq + q^2\}$	M1 A1 2	
	(ii)	By cosine rule:	M1	
		$\cos A = \frac{\left(p^2 + 2pq\right)^2 + \left(q^2 + 2pq\right)^2 - \left(p^2 + pq + q^2\right)^2}{2\left(p^2 + 2pq\right)\left(q^2 + 2pq\right)}$		
		$=\frac{p^{4}+4p^{3}q+4p^{2}q^{2}+q^{4}+4pq^{3}+4p^{2}q^{2}-p^{4}-2p^{2}\left(pq+q^{2}\right)-\left(pq+q^{2}\right)^{2}}{2\left(p^{2}+2pq\right)\left(q^{2}+2pq\right)}$	A1	
		$=\frac{2p^{3}q+2p^{2}q^{2}+q^{4}+4pq^{3}+4p^{2}q^{2}-p^{2}q^{2}-2pq^{3}-q^{4}}{2(p^{2}+2pq)(q^{2}+2pq)}$		
		$=\frac{2p^{3}q+5p^{2}q^{2}+2pq^{3}}{2(p^{2}+2pq)(q^{2}+2pq)}=\frac{(p^{2}+2pq)(q^{2}+2pq)}{2(p^{2}+2pq)(q^{2}+2pq)}=\frac{1}{2}$ $\Rightarrow A=60^{0}$	A1 3	